gorenstein projective objects in abelian categories
نویسندگان
چکیده
let $mathcal {a}$ be an abelian category with enough projective objects and $mathcal {x}$ be a full subcategory of $mathcal {a}$. we define gorenstein projective objects with respect to $mathcal {x}$ and $mathcal{y}_{mathcal{x}}$, respectively, where $mathcal{y}_{mathcal{x}}$=${ yin ch(mathcal {a})| y$ is acyclic and $z_{n}yinmathcal{x}}$. we point out that under certain hypotheses, these two gorensein projective objects are related in a nice way. in particular, if $mathcal {p}(mathcal {a})subseteqmathcal {x}$, we show that $xin ch(mathcal {a})$ is gorenstein projective with respect to $mathcal{y}_{mathcal{x}}$ if and only if $x^{i}$ is gorenstein projective with respect to $mathcal {x}$ for each $i$, when $mathcal {x}$ is a self-orthogonal class or $x$ is $hom(-,mathcal {x})$-exact. subsequently, we consider the relationships of gorenstein projective dimensions between them. as an application, if $mathcal {a}$ is of finite left gorenstein projective global dimension with respect to $mathcal{x}$ and contains an injective cogenerator, then we find a new model structure on $ch(mathcal {a})$ by hovey's results in cite{ho} .
منابع مشابه
Gorenstein projective objects in Abelian categories
Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...
متن کاملRelative Singularity Categories and Gorenstein-projective Modules
We introduce the notion of relative singularity category with respect to any self-orthogonal subcategory ω of an abelian category. We introduce the Frobenius category of ω-Cohen-Macaulay objects, and under some reasonable conditions, we show that the stable category of ω-Cohen-Macaulay objects is triangle-equivalent to the relative singularity category. As applications, we relate the stable cat...
متن کاملHomotopy Categories, Leavitt Path Algebras, and Gorenstein Projective Modules
For a finite quiver without sources or sinks, we prove that the homotopy category of acyclic complexes of injective modules over the corresponding finite-dimensional algebra with radical square zero is triangle equivalent to the derived category of the Leavitt path algebra viewed as a differential graded algebra with trivial differential, which is further triangle equivalent to the stable categ...
متن کاملStrongly copure projective objects in triangulated categories
In this paper, we introduce and investigate the notions of ξ-strongly copure projective objects in a triangulated category. This extends Asadollahi’s notion of ξ-Gorenstein projective objects. Then we study the ξ-strongly copure projective dimension and investigate the existence of ξ-strongly copure projective precover.
متن کاملObstruction Theory for Objects in Abelian and Derived Categories
In this paper we develop the obstruction theory for lifting complexes, up to quasi-isomorphism, to derived categories of flat nilpotent deformations of abelian categories. As a particular case we also obtain the corresponding obstruction theory for lifting of objects in terms of Yoneda Extgroups. In appendix we prove the existence of miniversal derived deformations of complexes.
متن کاملExistence of Gorenstein Projective Resolutions
Gorenstein rings are important to mathematical areas as diverse as algebraic geometry, where they encode information about singularities of spaces, and homotopy theory, through the concept of model categories. In consequence, the study of Gorenstein rings has led to the advent of a whole branch of homological algebra, known as Gorenstein homological algebra. This paper solves one of the open pr...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyناشر: iranian mathematical society (ims)
ISSN 1017-060X
دوره 39
شماره 6 2013
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023